WEATHER & CLIMATE

Ch. 1 Sect. 1 – "The Atmosphere"

Characteristics of the Atmosphere (Intro.)

- Earth surrounded by a mixture of gases.
 - Contains oxygen we need
 - Protects us from Sun
 - Atmosphere is always changing
 - Everything WE do, affects the make-up of the atmosphere

The Composition of the Atmosphere

- 78% Nitrogen
- 21% Oxygen [made by phytoplankton and other plants]
- 1% Other Gases [Argon, CO₂, tiny particles, & water *]
- Water is in atmosphere in different states:
 - LIQUID droplets
 - SOLID snow & ice crystals
 - * GAS invisible gas called "<u>water vapor</u>" (most H₂O in atmosphere)

Atmospheric Pressure and Temperature

- We carry a load equivalent to a column of air 700 km high every day
- Even though air is light, a square inch at sea level is under 15 POUNDS of air
 - (similar to carrying large bowling ball in tip of finger)

As Altitude Increases, Air Pressure Decreases

- Gravity pulls the atmosphere (air molecules) toward Earth
- Air pressure = <u>measure</u> of force that air molecules push on a surface
- When you're on Earth, more molecules are above you so air pressure is stronger than if you're in space. (e.g. people on bottom of human pyramid have more pressure)

 \circ As altitude $\widehat{1}$ air pressure \int

(altitude & air pressure are inversely related)

Atmospheric Composition Affects Air Temperature

- Some parts of atmosphere have more gases that absorb solar energy = warmer temp.
- Some parts of atmosphere have less gases that absorb solar energy = cooler temp.

Layers of the Atmosphere

- Because of temperature differences, there are 4 separate layers of atmosphere
 - Sphere = ball
 - Tropo = turning / change
 - Strato = layer
 - Meso = middle
 - Thermo = heat

The Troposphere: The Layer in Which We Live

- Layer next to Earth's surface
- Densest contains almost 90% of atmosphere's TOTAL MASS
- Almost all CO2, water vapor, clouds, air pollution, weather, & life are here
 - Temperature varies (altitude & temperature are inversely related)
- Gases in this layer mix continuously

The Stratosphere: Home of the Ozone Layer

- Gases are layered and don't mix like they do in the troposphere
- Air is thin and has little moisture
- OZONE LAYER in stratosphere (near top) = protects us from sun's harmful UV radiation
 - Because ozone is at top of layer & absorbs UV radiation ... $\uparrow\uparrow$ $\uparrow\uparrow$

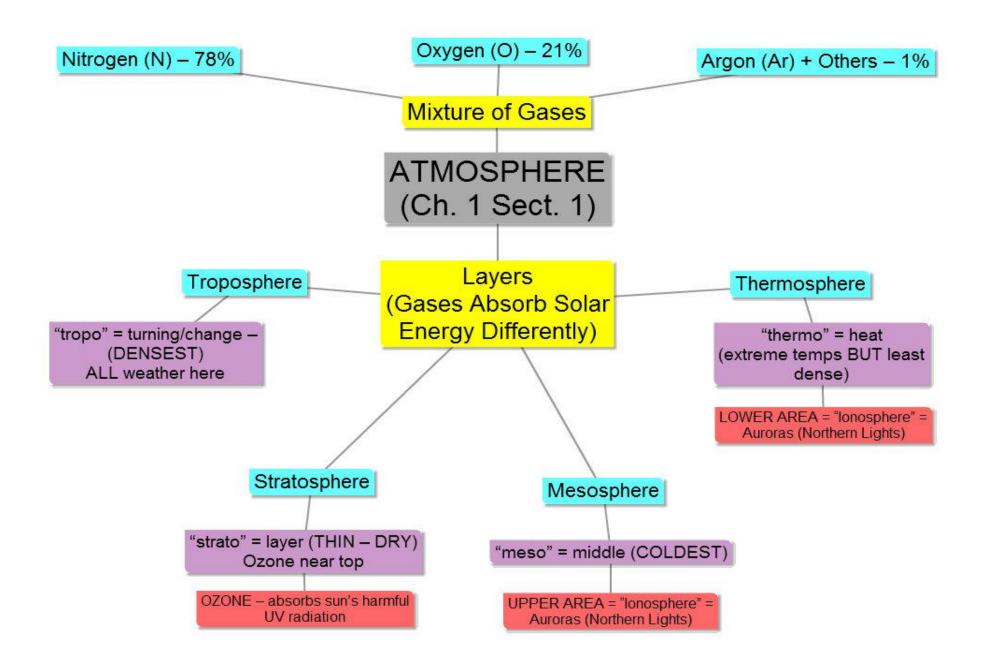
temperature as altitude

The Mesosphere: The Middle Layer

- Coldest layer
- Altitude and temperature are inversely related (like in troposphere)

The Thermosphere: The Edge of the Atmosphere

- Top atmospheric layer
- Temperature as altitude (like in stratosphere)


• **<u>Temperature</u>** = measure of average energy of particles in motion

• **<u>Heat</u>** = TRANSFER of thermal energy between objects of different temps.

Even though there are extreme temperatures $(1,000^{\circ}C +)$ in the thermosphere because the particles there are moving very fast, you cannot *feel* heat because there are so few particles (low density) to collide with or touch each other. *(see definitions above)*

The Ionosphere: Home of the Auroras

- Gas particles in upper mesosphere and lower thermosphere absorb harmful solar energy and become electrically charged = <u>IONS</u>.
- The ions in the thermosphere (layer is called "IONOSPHERE") radiate energy as shimmering lights = <u>AURORAS</u> (known as northern or southern lights)
- Ionosphere also reflects AM radio waves causing them to bounce off this layer and go back to Earth.

